Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Lancet Reg Health Eur ; 21: 100471, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1996406

ABSTRACT

Background: There remains uncertainty about the epidemiology of SARS-CoV-2 among school students and staff and the extent to which non-pharmaceutical-interventions reduce the risk of school settings. Methods: We conducted an open cohort study in a sample of 59 primary and 97 secondary schools in 15 English local authority areas that were implementing government guidance to schools open during the pandemic. We estimated SARS-CoV-2 infection prevalence among those attending school, antibody prevalence, and antibody negative to positive conversion rates in staff and students over the school year (November 2020-July 2021). Findings: 22,585 staff and students participated. SARS-CoV-2 infection prevalence among those attending school was highest during the first two rounds of testing in the autumn term, ranging from 0.7% (95% CI 0.2, 1.2) among primary staff in November 2020 to 1.6% (95% CI 0.9, 2.3) among secondary staff in December 2020. Antibody conversion rates were highest in the autumn term. Infection patterns were similar between staff and students, and between primary and secondary schools. The prevalence of nucleoprotein antibodies increased over the year and was lower among students than staff. SARS-CoV-2 infection prevalence in the North-West region was lower among secondary students attending school on normal school days than the regional estimate for secondary school-age children. Interpretation: SARS-CoV-2 infection prevalence in staff and students attending school varied with local community infection rates. Non-pharmaceutical interventions intended to prevent infected individuals attending school may have partially reduced the prevalence of infection among those on the school site. Funding: UK Department of Health and Social Care.

2.
BMC Bioinformatics ; 23(1): 137, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1793990

ABSTRACT

BACKGROUND: SARS-CoV-2 virus sequencing has been applied to track the COVID-19 pandemic spread and assist the development of PCR-based diagnostics, serological assays, and vaccines. With sequencing becoming routine globally, bioinformatic tools are needed to assist in the robust processing of resulting genomic data. RESULTS: We developed a web-based bioinformatic pipeline ("COVID-Profiler") that inputs raw or assembled sequencing data, displays raw alignments for quality control, annotates mutations found and performs phylogenetic analysis. The pipeline software can be applied to other (re-) emerging pathogens. CONCLUSIONS: The webserver is available at http://genomics.lshtm.ac.uk/ . The source code is available at https://github.com/jodyphelan/covid-profiler .


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Pandemics , Phylogeny , SARS-CoV-2/genetics
3.
Genome Med ; 13(1): 4, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1059849

ABSTRACT

During COVID-19, diagnostic serological tools and vaccines have been developed. To inform control activities in a post-vaccine surveillance setting, we have developed an online "immuno-analytics" resource that combines epitope, sequence, protein and SARS-CoV-2 mutation analysis. SARS-CoV-2 spike and nucleocapsid proteins are both vaccine and serological diagnostic targets. Using the tool, the nucleocapsid protein appears to be a sub-optimal target for use in serological platforms. Spike D614G (and nsp12 L314P) mutations were most frequent (> 86%), whilst spike A222V/L18F have recently increased. Also, Orf3a proteins may be a suitable target for serology. The tool can accessed from: http://genomics.lshtm.ac.uk/immuno (online); https://github.com/dan-ward-bio/COVID-immunoanalytics (source code).


Subject(s)
SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Computer Simulation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Epitopes, B-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Humans , Mutation , Phosphoproteins/genetics , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viroporin Proteins/genetics , Viroporin Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL